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ABSTRACT

A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR
measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving
models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor
models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a
manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining
geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across
the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison
with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measure-
ment space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval
procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is
expected to refine the a priori rain profile database and error models for use by parametric passive
microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future
TRMM algorithms.

1. Introduction

Precipitation measurements from space play an im-
portant role in observational studies of global climate.
A significant advance in this area has been made by the
Tropical Rainfall Measuring Mission (TRMM),
launched in November 1997. The TRMM satellite car-
ries both active and passive microwave sensors to mea-
sure rainfall: the precipitation radar (PR) and TRMM
Microwave Imager (TMI). The PR is the first space-
borne radar for observing precipitation, while the TMI
has a design that is similar to the Special Sensor Micro-
wave Imager (SSM/I) on board the Defense Meteoro-
logical Satellite Project (DMSP) satellite, except for im-
proved spatial resolution and an additional pair of
10.65-GHz channels to improve the capability of heavy
rainfall detection. These two sensors, individually, or in
combination, allow for a greater variety of approaches
to examine rainfall distributions. The initial PR and

TMI products, however, had significant rainfall bias
relative to each other. Version 5 of the TRMM opera-
tional algorithms had a 24% discrepancy in the global
mean precipitation between the TMI and PR level-2
rainfall products, denoted 2A12 and 2A25, respectively
(Kummerow et al. 2000). In addition, the products also
showed regional and temporal disagreements in re-
sponse to the tropical climate variability associated with
large-scale circulation and El Niño–Southern Oscilla-
tion (ENSO) (Berg et al. 2002; Robertson et al. 2003).
Preliminary indications are that the overall bias is being
drastically reduced in version 6 of the products. Re-
gional and temporal biases, on the other hand, have
been only slightly reduced. Continuous efforts are un-
der way to improve the operational algorithms with the
goal of reconciling any inconsistencies.

A number of investigations have been carried out
that examine the key factors that are responsible for the
sensor-dependent biases in rainfall estimations. Viltard
et al. (2000) conducted a case study to show that a
common drop size distribution (DSD) assumption for
simulating radar reflectivities and microwave bright-
ness temperatures yields a roughly consistent solution
of precipitation profiles. Masunaga et al. (2002) focused
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on the precipitation water content (PWC) and precipi-
tation water path (PWP) derived from the TMI and PR
operational products, and found a PR excess in near-
surface PWC over TMI in the midlatitude winter and a
TMI excess in PWP over PR in the Tropics. They indi-
cated that these biases, combined with a difference in
the conversion from precipitation water to rain rate
between the algorithms, account for the known discrep-
ancies in the operational products. Ikai and Nakamura
(2003) identified several specific error sources that are
inherent in each of the TMI and PR algorithms, such as
the freezing-level assumption in the TMI algorithm and
the Z–R and k–Z relations used by the PR algorithm.
Robertson et al. (2003) suggested that systematic
changes in DSD that are not accounted for in the 2A25
algorithm may be responsible for additional biases ob-
served during ENSO events.

The above studies suggest the need for a combined
radar and radiometer analysis that is grounded in a
common physical basis, instead of simply striving to
reconcile the independent operational TRMM prod-
ucts. A methodology of such an analysis is proposed in
this study, aimed to improve the a priori databases used
by the TMI operational algorithm, as well as parallel
research efforts (Mugnai et al. 1993; Kummerow and
Giglio 1994; Smith et al. 1994; Bauer et al. 2001; Kum-
merow et al. 2001). These schemes have historically
employed only cloud-resolving models (CRMs) to build
a priori databases and are, therefore, not necessarily
consistent with observed rainfall structures. These
schemes can all be improved by constructing databases
closer to the rainfall structures that are actually ob-
served by PR. Shin and Kummerow (2003), who did
some earlier work in this area, saw this as a critical step
to build parametric algorithms that could be employed
uniformly across a number of independent radiometers.

A significant improvement has been made since Shin
and Kummerow (2003), although the present study fol-
lows some of their technique without major changes
(e.g., the interpolation of the nonraining parameters
across raining areas). Shin and Kummerow (2003)
made the first attempt to demonstrate the performance
of a parametric retrieval algorithm based on synthetic
data. For this purpose, they simplified the procedure to
construct the a priori databases, focusing more on test-
ing the applicability of the databases. This paper, in
contrast, is mostly devoted to describing the technical
aspect of the database development. The database con-
struction scheme has been significantly refined since
Shin and Kummerow (2003), so that physical consis-
tency is ensured in the treatment of radar and radiom-
eter measurements. In particular, Shin and Kummerow
(2003) used TMI brightness temperatures only to assess

the algorithm performance, while the present study di-
rectly incorporates brightness temperatures in the
analysis to optimize the solution by adjusting the DSD
and ice-density models, as described later.

There are some differences in objectives between this
study and other work related to combined radar and
radiometer algorithms, such as Olson et al. (1996) and
Grecu et al. (2004), and the TRMM combined PR and
TMI (2B31) algorithm (Haddad et al. 1997). These ef-
forts were concerned primarily with developing opera-
tional algorithms. Our goals are summarized as follows.
First, this work is aimed at the improvement of a priori
databases for use by parametric retrieval algorithms as
an extended study initiated by Shin and Kummerow
(2003). Second, the current method is also targeted at
enabling refinements of CRM through joint efforts with
the model community. CRMs describe the dynamical
evolution of precipitating cloud systems under given
initial and boundary conditions. The legitimacy of those
prescribed conditions, however, can be constrained
only by observations. A large number of observations,
together with nonraining parameter retrievals, gives us
an opportunity to investigate rainfall variability in
terms of the large-scale environment characterized by
SST, humidity, wind speed, and other environmental
parameters. It can be useful to examine the relationship
between those geophysical parameters and CRM pro-
files by tracing the PR-selected profiles back in the
original database. We see this as a quantitative measure
to test CRM in the context of various large-scale envi-
ronments, as done by a GCM superparameterization
technique. Our long-term purpose is, thus, not only to
develop a new scheme for precipitation retrievals, but
to seek a way to exploit rainfall observations for im-
proving models as well.

Finally, the algorithm architecture is designed so that
the known inconsistencies in the TRMM rainfall re-
trievals between PR and TMI can be directly ad-
dressed. A number of studies mentioned earlier in this
section have shown that those inconsistencies are
closely related to errors in the assumptions built in the
algorithms and their biases associated with climate vari-
ability. The analysis scheme presented here preserves
the PR retrieval with given assumptions without adjust-
ment separately from that with the optimized assump-
tions using TMI measurements. This approach enables
us to explicitly quantify the impact of TMI on the as-
sumptions in the PR-only algorithm, in contrast to
other combined algorithms that are aimed at finding
solutions that simultaneously invert the TMI and PR
data. The present method first employs only PR mea-
surements. To the extent that PR measurements con-
tain explicit assumptions related to DSD and ice par-
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ticle properties, these are then adjusted to be consistent
with TMI observations as well. Uncertainties in PR-
retrieved rainfall, such as the DSD assumption, are ex-
plicitly verifiable by examining the inconsistency with
TMI measurements. This keeps the error propagation
transparent throughout the analysis, and provides the
basis for eventually interpreting differences between
radar and radiometer products. The representativeness
of the a priori database, corresponding to the prior
probability distribution in the Bayesian framework, is
also critical to ensure unbiased retrievals. Once the a
priori database is constructed offline, existing Bayesian
inversion schemes may be used to perform operational
rainfall retrievals.

The applicability of these databases to parametric
algorithms, as outlined by Shin and Kummerow (2003),
makes such an approach more important in the future
as increasing numbers of microwave radiometers with
various designs, for example, the Special Sensor Micro-
wave Imager Sounder (SSMIS) and Advanced Micro-
wave Scanning Radiometer (AMSR), are launched and
operated. Although the TRMM is currently the only
satellite that carries both a radar and a radiometer, the
a priori database that is constructed based on the
TRMM analysis can be shared by any radiometers that
are unaccompanied with a radar. This is a great advan-
tage for the Global Precipitation Measurement (GPM)
mission that is being planned for launch around 2010,
where a core satellite carrying a dual-frequency radar

and a TMI-like radiometer is supposed to algorithmi-
cally calibrate constellation satellites with only radiom-
eters aboard. An a priori database constructed from the
core satellite provides such a homogeneous resource
that all constellation radiometers can employ in their
estimates.

The present paper is a detailed description of the
methodology used to construct an a priori database
from radar, radiometer, and CRM data (section 2). Sec-
tion 3 discusses the performance of an iterative proce-
dure used to adjust the radar retrieval assumptions to
minimize inconsistencies with radiometric measure-
ments. Brief concluding remarks are provided in sec-
tion 4.

2. Data and method

This section offers a detailed description of the meth-
odology and datasets that are applied to the analysis.
The algorithm flow is outlined in Fig. 1. For it to be
reproducible, the theoretical background and technical
aspects of the analysis are covered in some detail.

a. Satellite sensors and data

The TRMM PR and TMI data are utilized as obser-
vational inputs. The TRMM satellite was launched in
November 1997 into a sun-asynchronous orbit with a
35° inclination and an altitude of 350 km. The TMI, a

FIG. 1. Flowchart of the analysis. Dashed arrows denote the portions that will be addressed
in future work.
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conically scanning sensor with a viewing angle of 52.8°
at the earth’s surface, has nine channels, as described in
Table 1. The TMI swath is 759 km wide with 104 (208)
effective fields of view (EFOVs) per scan for channels
1–7 (8 and 9). The down-track interval between adja-
cent scans is 13.9 km. The PR is a single-frequency (13.8
GHz) radar having horizontal and vertical resolutions
of 4.3 and 0.25 km, respectively, at nadir. The PR has a
cross-track scan ranging between �17°, resulting in a
swath width of 215 km. The PR sensitivity or minimum
detectable echo is 17 dBZ after the system noise is
subtracted (TRMM PR Team 2000). The spatial reso-
lutions and swath widths have changed slightly since the
TRMM orbital altitude was raised from 350 to 402 km
in August 2001. The present study uses data acquired
prior to the orbit boost.

The analysis requires four datasets from the TRMM
standard data products: the 1B11 TMI brightness tem-
peratures, 1C21 PR reflectivity profiles, the 2A21 PR
two-way path-integrated attenuation (PIA), and the
2A25 PR rainfall products (shown in the upper-left cor-
ner of Fig. 1). The 1B11 brightness temperatures at
channels 1–7 are interpolated so that these channels
have the same footprint allocation as channels 8 and 9.
The 1C21 dataset contains radar reflectivities without
attenuation correction and the rain flag that defines the
presence or absence of rain signals. A given PR pixel is
designated as “rain certain” when echoes above the
noise level are detected in clutter-free ranges. In this
analysis, the 250-m vertical resolution of PR is reduced
to a 0.5- to 1-km resolution in order to match CRM
simulations needed to supply those parameters that are
not directly observed by PR (discussed in section 2b).
The 2A21 algorithm adopts the surface reference tech-
nique (SRT) to estimate PIA, exploiting a depression in
the surface scattering of radar echoes in raining areas
compared to surrounding rain-free areas (Meneghini et
al. 2000). The 2A25 rainfall product is not required as
an input by our algorithm. It is used simply for com-
parison with the results of the present analysis. The
2A25 algorithm derives rainfall profiles from given ra-
dar reflectivities with a hybrid scheme combining the
Hitschfeld–Bordan equation (Hitschfeld and Bordan
1954) and SRT for the attenuation correction (Iguchi et

al. 2000). Because the SRT provides an independent
piece of information in addition to radar reflectivities,
the 2A25 algorithm allows the coefficients in the k–Z
relation, and, thus, the Z–R relation, to be optimized
when PIA information is deemed reliable. Iguchi et al.
(2000) call this technique the �-adjustment method. Be-
cause the k–Z and Z–R coefficients are related to the
DSD assumption, the �-adjustment method is philo-
sophically identical to adjusting the DSD model.

b. CRM database

The rainwater and precipitation ice can be derived
directly from PR measurements, albeit with some as-
sumptions. For the database construction described
here, however, a complete set of atmospheric param-
eters is needed. This includes those parameters that are
not directly measured by PR, such as the temperature
structure, water vapor, and cloud water within the pre-
cipitating column. To that end, a precomputed set of
CRM profiles is introduced and matched with PR re-
flectivity and PIA, when applicable. This study adopts
the source set of CRM simulations used in the latest
version of the Goddard profiling (GPROF) algorithm
(Kummerow et al. 2001). The database, constructed
from the Goddard Cumulus Ensemble (GCE) model
(Tao and Simpson 1993) and the University of Wiscon-
sin (UW) Nonhydrostatic Modeling System (NMS)
(Tripoli 1992), currently consists of 32 snapshots, in-
cluding different evolutionary stages of tropical meso-
scale convective systems (MCSs), scattered convection,
hurricanes, warm/cold frontal rain systems, and extra-
tropical cyclones. Each snapshot is organized in the for-
mat of a 136 � 136 to 256 � 256 horizontal grid, with a
horizontal resolution of 1.33–4 km and 28 vertical lay-
ers with the resolution of 0.5 km below 10 km in alti-
tude and 1 km above 10 km up to 18 km. Precipitation
profiles consist of the following five hydrometeor spe-
cies: rain, snow, graupel, cloud water, and cloud ice.
Atmospheric background parameters are also included
in the CRM outputs.

c. Raining parameters

The raining parameters or precipitation liquid/ice
water content are determined principally by PR mea-

TABLE 1. TMI channel specifications (Kummerow et al. 1998). Channel frequencies are shown with the IFOVs along the
down-track (DT) and cross-track (CT) directions.

Channel No. 1 2 3 4 5 6 7 8 9

Frequency (GHz) 10.65 10.65 19.35 19.35 21.3 37.0 37.0 85.5 85.5
Polarization V H V H V V H V H
DT IFOV (km) 59.0 60.1 30.5 30.1 27.2 16.0 16.0 6.7 6.9
CT IFOV (km) 35.7 36.4 18.4 18.2 16.5 9.7 9.7 4.1 4.2
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surements (indicated by yellow-colored panels in Fig.
1). The largest sources of errors for precipitation re-
trievals for a single-frequency, nonpolarimetric radar,
such as PR, are the uncertainties in rain DSD and in the
microphysical properties of frozen and melting par-
ticles. Our analysis starts with the DSD assumption,
which is consistent with the 2A25 DSD model used to
derive their Z–R relations (Iguchi et al. 2000). The ice-
particle characterization is initially the same as pro-
vided by the original CRM database. Under these ini-
tial assumptions, the CRM profile that best reproduces
a given series of radar reflectivities is selected for the
solution. The PIA is also incorporated to optimize the
DSD model when a PIA signal is deemed reliable by
the 2A21 product. By repeating this procedure over all
of the raining near-nadir PR pixels, one obtains the
complete spatial structure of the raining parameters in
the PR-observed domain. A detailed description of the
procedure is provided in the following sections.

1) RAINDROP SIZE DISTRIBUTION

The DSD model is prescribed in terms of the median
volume diameter D0 as a function of the surface liquid
water content. Use of D0 is intended to make our DSD
model verifiable by ground measurements because it is
a commonly used variable to characterize DSDs in po-
larimetric radar measurements (Bringi and Chan-
drasekar 2001). This study assumes DSD to be a gamma
distribution (in mm�1 m�3),

N�D� � N0� D

D0
��

exp���3.67 � ��
D

D0
�, �1�

where N0 is in mm�1 m�3, D0 in mm, and 	 is the
nondimensional exponent of the gamma distribution
that is assumed to be 3, following the PR 2A25 algo-
rithm (Iguchi et al. 2000). For a gamma DSD, the liquid
water content (or the mass density of rainwater; in g
m�3) W and the radar reflectivity (in mm6 m�3) Z are
expressed in terms of N0, 	, and D0 as

W 

�

6
10�3�w �

0

�

D3N�D� dD

�
�

6
10�3�wN0

D0
4

�3.67 � ��4��
��4 � ��, �2�

and

Z 
 �
0

�

D6N�D� dD

� N0

D0
7

�3.67 � ��7��
��7 � ��, �3�

where �w � 1 g cm�3 is the density of liquid water and
� is the gamma function. Rain rate (in mm h�1) R is
derived similarly as

R 

3600

106

�

6 �
0

�

��D�D3N�D� dD

� 0.6� � 10�3 · 3.78N0

D0
4.67

�3.67 � ��4.67��
��4.67 � ��,

�4�

where the drop fall velocity (in m s�1) (D) was given by

��D� � 3.78D0.67 �5�

(Bringi and Chandrasekar 2001). The relation between
W and R is obtained by combining Eqs. (2) and (4) as

W

R
�

�w

6 � 0.6 � 3.78
��4 � ��

��4.67 � �� �3.67 � �

D0
�0.67

, �6�

or

W

R
� 7.227 � 10�2D0

�0.67 for � � 3. �7�

For a realistic range of D0, W/R are weakly, but non-
linearly, dependent on D0 and 	. Although R is a more
conventional quantity that is used to evaluate the rain
intensity, we adopt W instead of R as an independent
variable for modeling D0 [see Eq. (11) below], because
R suffers from an additional ambiguity due to the un-
certainty in (D). Eliminating N0 by combining Eqs. (2)
and (3), one has

Z

W
�

6

10�3��w
� D0

3.67 � ��3 ��7 � ��

��4 � ��
. �8�

Equation (8) then leads to a unique relationship be-
tween D0 and W if Z is given as a function of W. A Z–W
relation is introduced as

W � awZbw, �9�

with which a relationship between D0 and W is ob-
tained by eliminating Z in Eq. (8),

D0 � �3.67 � ���10�3��w

6aw
1�bw

��4 � ��

��7 � ��
W�1�bw��1�1�3

.

�10�

The coefficients aw and bw, derived from the same DSD
models as are assumed by the 2A25 algorithm, are
shown in Table 1 of Masunaga et al. (2002). We adopt
the values that are computed for 0°C rainwater, that is,
aw � 0.001 998 06 and bw � 0.613 42 for stratiform rain,
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and aw � 0.003 917 52 and bw � 0.578 55 for convective
rain.

The initial DSD model D0,i in the present study is
defined as

D0,i � D0,s � tanh� W

0.3 g m�3��D0,c � D0,s�, �11�

where D0,s (D0,c) is calculated by Eq. (10) using strati-
form (convective) aw and bw. In Eq. (11), D0,i is de-
signed to stay close to D0,s for light rains, but shifts
closer to D0,c as W increases so that it reflects the gen-
eral trend that light rain is produced mainly by strati-
form precipitation, while deep convection is respon-
sible for heaviest rainfall. Figure 2 shows D0,i, D0,s, and
D0,c as a function of W, as well as four additional DSD
models parallel to D0,i by the intervals of �0.3 and �0.6
mm. These additional models are employed to adjust
the DSD when PIA is large, and will also be used to
update the DSD model to minimize the inconsistency
between the measured and computed brightness tem-
peratures as described in section 3.

The backscattering and extinction coefficients are
calculated based on the CRM-provided liquid water
content, along with the DSD model specified by Eq.
(11) for use by the radar echo simulation. Mie calcula-
tions are applied neglecting a small departure from the
sphericity of raindrops.

2) FROZEN AND MELTING PARTICLES

Frozen and melting hydrometeors have very compli-
cated and highly variable crystal structures. This makes
it extremely difficult to model their microphysical and
dielectric properties precisely. The irregularity in shape
of ice/melting hydrometeors leads to an additional er-
ror source in forward radiative transfer simulations that
are used by the retrieval algorithms. Melting particles,
in particular, are radiatively important because they ac-
count for radar bright bands as well as an increase in
the attenuation of radar echoes within a melting layer.
Microwave brightness temperatures can also be signifi-
cantly influenced by the enhanced extinction by melting
hydrometeors, but a large uncertainty remains because
the physical process of particle melting is not well un-
derstood (Bauer et al. 1999; Olson et al. 2001; Battaglia
et al. 2003).

The particle size distributions of snow and graupel
are assumed to follow an exponential form of

Ni�D� � N0,i exp���iD�, �12�

where

�i � ��N0,i�i

Wi
�1�4

, �13�

and Wi (in g m�3) is the ice (snow or graupel) water
content provided by CRMs. The particle density �i is 1
� 105 g m�3 for snow and 4 � 105 g m�3 for graupel,
and the intercept parameter N0,i is given as 1 � 105

mm
�1

m�3 for snow and 4 � 103 mm�1 m�3 for graupel.
The present study relies on the Maxwell–Garnett
model, assuming ice matrix with air inclusions to calcu-
late the effective dielectric constant of frozen particles
(Bauer et al. 1999; Olson et al. 2001). The volume frac-
tion of air inclusions is given as 1 � �i/�si, where �si is
the solid ice density or 0.917 � 106 g m�3. Mie calcu-
lations are used, assuming an effective dielectric con-
stant, to compute the backscattering and extinction co-
efficients for those particles, as done for raindrops.
Melting particles are treated by defining a 500-m melt-
ing layer below the 0°C height. This domain is divided
into a number of sublayers to take into account differ-
ent stages of the melting process. The melting particle
size distribution is linearly interpolated from the snow-
flake size distribution to the rain DSD, while the di-
electric constant of melting particles is kept constant at
a fifty–fifty mixture of snow and rain within the melting
layer. Finally, the computed radiative properties are
averaged over the sublayers. Although this treatment is
highly simplified, the resultant extinction coefficient
was found to fall onto a moderate value, compared to
various models of melting particles shown by Fig. 4 of
Battaglia et al. (2003).

3) RADAR ECHO SIMULATION

For a given set of the radiative properties of hydro-
meteors and the atmospheric gas absorption coefficients,
radar reflectivities and PIA are calculated for every

FIG. 2. The assumed DSD models. The thick solid line denotes
the initial assumption and the four thin solid lines parallel to it
show candidate models to be chosen by the PIA adjustment and
the assumption update. The dashed and dotted lines correspond
to the 2A25 DSD models for convective and stratiform rains,
respectively.
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CRM profile stored in the initial database. Each CRM
profile is accompanied by 25 separate simulations with
five DSD assumptions shown in Fig. 2, and by five dif-
ferent assumptions of the ice-density model as men-
tioned later in section 3. The appendix shows the equa-
tions to be calculated, Eqs. (A7) and (A11), as well as
their derivations.

Simulated radar reflectivities and PIA constitute the
database to be searched in the matching process, where
a vertical sequence of simulated radar reflectivities are
compared, one at a time, with a ray of PR reflectivities.
As such, the physical consistency that is assured in the
CRM framework is preserved with respect to the ver-
tical structure of precipitation.

Radar echo simulations are performed only along a
nadir view to avoid the geometrical complexity arising
from the scan-angle dependence. This constrains the
current analysis to be applicable only to near-nadir PR
scans. The PR scans in use are �10 (�5) scans around
nadir, or approximately 90 (50) km in swath width, and
are correspondingly 7° (3.5°) in scan angle, for a case
study (for daily statistics) shown later in this paper. A
deviation from nadir is smaller than 1% in terms of the
direction cosine of the PR viewing angle for both the
cases.

4) MATCHING PROCEDURE

The procedure to identify the optimal rain profile
that matches a given PR measurement is described
here. The TRMM SRT (or 2A21) algorithm defines the
“reliability factor” as the ratio of PIA to the standard
deviation in the normalized scattering cross section of
the rain-free surface, ��0 (NR)� (Meneghini et al. 2000).
The SRT estimation of PIA tends to be unreliable when
PIA is small (or rainfall is light) and/or when ��0 (NR)�
is very noisy in the case that neighboring rain-free areas
are poorly sampled. The PIA is incorporated in the
matching process when the reliability factor exceeds 3
(hereafter denoted as the heavy-rain case). The PIA is
neglected (the light-rain case) otherwise. The best-fit
solution is defined as the CRM profile with the simu-
lated radar profile that minimizes

�yobs � ysim�TS	
�1�yobs � ysim�, �14�

where yobs, ysim, and S� are the observed variables,
simulated variables, and the measurement error covari-
ance, respectively. In the light-rain case, observations
and model profiles are compared in terms of radar re-
flectivities without PIA, that is,

yobs � �Z1
obs, Z2

obs, . . . , ZNl

obs�T, �15�

ysim � �Z1
sim, Z2

sim, . . . , ZNl

sim�T, �16�

where Zi is the reflectivity at the ith layer and Nl is the
total number of layers. The assumed DSD model is
fixed to be Eq. (11) (the thick, solid line in Fig. 2).
Because rain rates at different layers are not indepen-
dent of each other (Coppens et al. 2000), S� would be a
nondiagonal matrix. In the present study, however, off-
diagonal components are ignored for brevity, leaving a
future study to fill them out. The ith diagonal compo-
nent of S�, wii, is given by

wii � 
Zsys
2 � 
Zsim

2 , �17�

where


Zsys � 100.1�sys,


Zsim �
dZi

ddBZi
�mdl � 0.1�ln10�Zi�mdl,

Zi �
1
2

�Zi
obs � Zi

mdl�,

�mdl � �mdl
rain for i � i0 � 1,

�mdl � �mdl
melt for i0 � 1  i  i0 � 1,

�mdl � �mdl
ice for i � i0 � 1,

and i0 denotes the layer that contains the 0°C height.
The system noise of PR is about 14 dBZ for PR
(TRMM PR Team 2000). The modeling errors are at-
tributed to ambiguity in the dielectric modeling of hy-
drometeors, which is minimal for raindrops and worse
for melting particles, as discussed previously in this
section. Currently, the modeling errors for raindrops
(�rain

mdl), melting particles (�melt
mdl ), and ice hydrometeors

(�ice
mdl) are given as 0.3, 3, and 1 dBZ, respectively. Be-

cause of the limitation of our present knowledge on the
hydrometeor dielectric properties, these numbers are
only tentative, which qualitatively take into account a
larger uncertainty in the dielectric modeling of ice and
melting particles.

The PIA may be used as an independent piece of
information in the heavy-rain case. Correspondingly,
Eqs. (15) and (16) are replaced with

yobs � �Z1
obs, Z2

obs, . . . , ZNl

obs, Aobs�T, �18�

and

ysim � �Z1
sim, Z2

sim, . . . , ZNl

sim, Asim�T, �19�

where

Aobs � 10�0.1��observed PIA in dB�, �20�

and

Asim � 10�0.1��simulated PIA in dB�. �21�
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The error covariance matrix is assumed to be diagonal,
as before. Nonzero components in S� are same as in the
light-rain case, except for the additional diagonal com-
ponent corresponding to PIA,

wNl�1,Nl�1 � �0.1 ln10��0�NR���2. �22�

By virtue of an additional degree of freedom given by
PIA, the best-fit solution is now sought among the en-
tire set of candidate profiles with variable DSD models
(all solid lines in Fig. 2) to constrain the DSD assump-
tion. This approach is conceptually parallel to the �-ad-
justment method of the 2A25 algorithm (Iguchi et al.
2000), although technical details are different.

d. Nonraining parameters

Atmospheric water vapor (WV), cloud liquid water
(CLW), surface wind (SW), and sea surface tempera-
ture (SST) in rain-free areas are designated as nonrain-
ing parameters in the present study. These parameters
are not detectable by PR but are needed for the com-
putation of microwave brightness temperatures later in
the analysis (section 2f). The nonraining parameters are
derived from TMI brightness temperatures for the foot-
prints that are diagnosed as rain free by collocated PR
signals, and are then interpolated across all raining and
nonraining scenes at the PR resolution. The computa-
tional procedure, outlined by blue-colored panels in
Fig. 1, is described in this subsection.

Column water vapor (CWV), liquid water path
(LWP), SW, and SST are adopted from the TMI prod-
ucts provided by Remote Sensing Systems (RSSs) in
the current analysis. Daily datasets are employed for
all of these parameters except SST, for which 3-day-
averaged datasets are used. The temporal variation in
SST is generally negligible on a time scale of 3 days.
The daily products are virtually equivalent to the in-
stantaneous retrievals, except for some of the following
minor differences: 1) the distributed products are pro-
jected on the 0.25° � 0.25° global grid, and 2) two or
more snapshots observed at separate times are com-
bined together where different orbits overlap on the
same day. Therefore, the original resolution is recov-
ered by extrapolating the gridded data on TMI foot-
prints, and the latitudinal ranges that are higher than
30° are excluded from the current analysis to avoid the
orbital overlaps. The RSS TMI products contain two
different versions of surface wind speed depending on
the channel used for retrieval (10 or 37 GHz). We adopt
the 37-GHz version for surface wind speed because it is
less susceptible to the sun glitter than the 10-GHz ver-
sion.

1) IDENTIFICATION OF RAIN-FREE TMI
FOOTPRINTS

Figure 3 schematically illustrates a TMI footprint
with a PR pixel to be collocated. The geodesic direction
vector pointing at a PR pixel from the TMI footprint
center dPR, and the direction from the subsatellite point
to the TMI-footprint center dTMI define an angle � be-
tween them as

cos� �
dTMI · dPR

|dTMI| |dPR| , �23�

where dTMI dPR represents the scalar product of dTMI

and dPR. Assuming a TMI footprint to be an ellipse
with the diameters equivalent to the cross-track and
down-track instantaneous fields of view (IFOVs; ��
and ��, respectively), the radius of the TMI footprint
along dPR, rfp is given as

rfp �
1
2

���2 cos2� � ��2 sin2��1�2, �24�

where

� � tan�1���

��
tan��. �25�

A PR pixel is considered to fall in the given TMI foot-
print when

|dPR|  rfp. �26�

If none of the PR pixels that satisfy this condition are
considered to be rain certain, as defined in the 1C21
dataset, the TMI footprint under consideration is de-
fined as rain free.

We utilize the IFOVs of the 19-GHz channel as cri-
teria common to all of the TMI channels for identifying
clear footprints. Use of the 19-GHz IFOVs guarantees
the clear condition Eq. (26) to be satisfied at all other
channels, except at 10 GHz. The 10-GHz brightness
temperatures are generally insensitive to the nonrain-
ing parameters, except for SST, which uses the 3-day-
averaged value and is, thus, available regardless of the
presence of rain.

2) RETRIEVAL

The development of microwave algorithms to derive
the nonraining parameters over the ocean has a long
history in the satellite remote sensing community (e.g.,
Chang and Wilheit 1979; Greenwald et al. 1993; Wentz
1997). The present analysis utilizes the RSS TMI data
archive, as mentioned previously. The vertical distribu-
tions of WV and CLW are determined from the RSS-
provided CWV and LWP. For brevity, WV (in g m�3)
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is assumed to be exponential as a function of z under a
given CWV (in kg m�2),

WV�z� �
CWV
hWV

exp��
z

hWV
�, �27�

where the water vapor scale height hWV is fixed at 2.3
km. Cloud layers in rain-free areas are assumed to be

CLW�z� � LWP�0.5 for 2 km  z  2.5 km

CLW�z� � 0 for z � 2 km and 2.5 km � z, �28�

where CLW is in g m�3 and LWP is in kg m�2.
Our computed brightness temperatures from the

nonraining parameters (as defined above) show good
agreement with TMI measurements, except for a small
overestimation (underestimation) of brightness tem-
peratures for small (large) values of CWV. This bias
results from the difference in radiative transfer schemes
and/or optimization procedures used by the RSS re-
trieval algorithm. We, therefore, made a slight change
in CWV from the RSS-provided CWV, CWVRSS, as

CWV � �1 � �CWVRSS � 30 kg m�2��300�CWVRSS,

�29�

to ensure consistency between the nonraining param-
eters and the brightness temperatures from which they
are computed. This modification ensures agreement be-
tween computed and measured brightness tempera-

tures at 10-, 19-, and 21-GHz channels for clear-sky
areas, while it results in a slight overestimation of com-
putations at the 37-GHz channel.

e. Interpolation of geophysical parameters over PR
pixels

Once the nonraining parameters are retrieved from
TMI measurements, they are interpolated across the
whole observed scenes at the PR resolution. The sur-
face wind SW, at the nth PR pixel SWn, is evaluated as
a weighted average computed from surrounding rain-
free TMI footprints,

SWn � � �
i

rain-free TMI

wniSWi��� �
i

rain-free TMI

wni�,

�30�

with a Gaussian weight as a function of the distance
between the nth PR pixel and the ith TMI footprint dni,

wni � exp��
dni

2

2�2�. �31�

The variance �2 represents the typical scale of spatial
correlation in SW, but the present analysis assumes an
arbitrary value of � � 30 km because of the lack of our
knowledge on the physics governing �. The SST is in-
terpolated in the same manner as for SW.

FIG. 3. A schematic of the geometrical relation between a TMI footprint and a PR pixel.
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In contrast to SW and SST, raining PR pixels yield
their own WV and CLW, obtained through the PR-
matching technique that is described in section 2c.

These are used as well for the interpolation in conjunc-
tion with the rain-free TMI footprints. The equivalent
of Eq. (30) for WV and CLW becomes

qn�z� � � �
i

rain-free TMI

wniqi�z��TMI � �
j

raining PR

wnjqj�z��PR��� �
i

rain-free TMI

wni�TMI � �
j

raining PR

wnj�PR�, �32�

where q(z) denotes the vertical profiles of WV and
CLW, and ���� (�PR) is the mean area coverage rep-
resented by a single TMI footprint (PR pixel), defined
as the product of the along-scan pixel interval and the
down-track scan interval for TMI (PR) or 4.6 km � 13.6
km (4.3 km � 4.3 km). Equation (32) is applied only to
rain-free PR pixels.

The interpolated nonraining parameters, together
with the PR-derived raining parameters, provide a
complete three-dimensional structure of the geophysi-
cal parameters at the PR resolution within the central
portion of the PR swath. Microwave radiative transfer
calculations are then applied to these parameters to
examine their consistency with observed brightness
temperatures.

f. Brightness temperature computations

The geophysical parameters that are derived from
PR observations are not necessarily guaranteed to ac-
curately reproduce TMI brightness temperatures. We
argue two major factors that could cause a disagree-
ment in the brightness temperature space. First, the
DSD uncertainty still remains after the radar matching
process because heavy rainfall that leads to a robust
estimate of PIA is relatively infrequent. The initial es-
timate of DSD is, therefore, not updated for a majority
of precipitation. An error in the DSD assumption
would result in a bias in computed brightness tempera-
tures through the PR’s misestimation of the rainwater
content. Second, frozen hydrometeors are not well con-
strained by PR because frozen and melting particles are
less weighted in the least squares fitting [minimizing
Eqs. (14)], and are, hence, less well captured by PR
echoes than raindrops are. Therefore, it is not until
TMI brightness temperatures, particularly at 85 GHz,
are incorporated in the analysis that ice particles aloft
are given a satisfactory observational constraint.

Brightness temperatures are computed by a radiative
transfer scheme based on the Eddington approximation
(Kummerow 1993) with a given set of the extinction
coefficient, single scattering albedo, and asymmetry
factor, derived in a consistent manner, with the back-
scattering and extinction coefficients applied to radar
echo simulations (section 2c). The atmospheric tem-

perature is defined assuming the constant lapse rate of
6.5 K km�1 bound by SST at the bottom of the atmo-
sphere. Radiative transfer calculations are performed
over every single PR-viewing column under a modified
plane-parallel approximation that takes into account
the intersection of a slant TMI sight line across several
adjacent columns. The slant-intersection effect is larg-
est at the 85-GHz channel because of the smallest foot-
print size and the sensitivity to ice particles aloft. As
illustrated in Fig. 4, TMI could see an appreciable
amount of ice aloft on the sight line originating from a
rain-free surface (arrow with a solid line in Fig. 4) or, on
the contrary, could miss the ice, while the associated
rainfall below is detected (arrow with a dashed line). A
horizontal displacement due to the slant-intersection
effect is roughly estimated as zice tan �s, where zice is the
altitude of the scattering ice particles and �s is the sen-
sor viewing angle at the surface, and is estimated as 13
km for zice � 10 km and �s � 52.8°, or the TMI viewing
angle. The “modified” plane-parallel approximation is
designed to properly deal with the slant-intersection
effect to ensure a pixel-by-pixel matching in the bright-
ness temperature space.

Once brightness temperatures are computed at the

FIG. 4. A schematic of the TMI scan geometry to demonstrate
the slant-intersection effect.
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PR resolution, they are convolved with a two-
dimensional Gaussian beam pattern,

Tb��, �� �
ln2

����� � d�� � d��Tb���, ���

� exp��ln2���� � ��2

��2 �
��� � ��2

��2 ��,

�33�

where � and � denote the cross- and down-track coor-
dinates, respectively, �� is the cross-track IFOV (Table
1), �� is the down-track IFOV, and Tb is the brightness
temperature at the TMI resolution.

g. Initial case study

In this final part of section 2, the methodology that is
introduced above is summarized and applied to a case
study in order to briefly demonstrate the performance
of the algorithm. A tropical MCS over the central Pa-
cific Ocean that is observed by TRMM (orbit number
13183; 12 March 2000) is used for the case study.

Input data, required in advance, are a set of radar
and radiometer observation datasets, an a priori data-
base constituted of CRM-computed precipitation pro-
files, and a radar profile database containing reflectivi-
ties and PIA simulated from the CRM profiles (orange
and light-blue ellipses at the top of Fig. 1). First, the
precipitation liquid/ice water content is derived from
PR measurements. The simulated profile that best fits a
given radar measurement is sought and identified,
where the PIA is used as well as the radar reflectivity in
the matching process to constrain the DSD assumption
when robust PIA signals are available. The best-fit
CRM profiles are then assigned to PR pixels to recon-
struct the spatial structure of precipitation (yellows in
Fig. 1). Figure 5 shows the near-surface rain rate that is
estimated in this manner, along with the PR opera-
tional product (2A25 surface rain) as a reference. These
two retrievals exhibit an excellent qualitative agree-
ment, although some quantitative differences are ob-
served. Comparison of the surface rain rates will be
discussed in section 3 in terms of daily statistics.

The nonraining parameters (SST, WV, CLW, and
SW) are assigned from TMI brightness temperatures
for rain-free footprints that are identified by collocated
PR pixels (the algorithm components concerning this
part are designated by blue-colored panels in Fig. 1).
Figure 6a shows a snapshot of the CWV retrieved for
rain-free TMI footprints, where raining TMI footprints
are temporarily set as missing. The CRM-provided
relative humidity associated with PR-retrieved precipi-
tation profiles defines CWV on raining PR pixels (Fig.

6b). Combining and interpolating those two CWV es-
timates completes the map of CWV assigned on all PR
pixels, as shown in Fig. 6c. The CLW is derived in the
same manner, while SST and SW are interpolated only
from TMI footprints. It is noted that CWV can be
slightly larger in a rain-free area than in an adjacent
raining area (e.g., reddish portion in Fig. 6a). This in-
consistency can be avoided in the future once an inter-
nal retrieval scheme of the nonraining parameters is
used, instead of the external data archive that is used in
the current study.

The nonraining and raining parameters together are
used to simulate microwave brightness temperatures
(greens in Fig. 1). Figure 7 depicts observed and com-
puted brightness temperatures (solid and dashed
curves, respectively, in the lower four panels), as well as
the PR-retrieved raining parameters and assumed DSD
and ice-particle models (top four panels) in the nadir
cross section for the same scene as Figs. 5 and 6. The ice
characteristics will be allowed to be modified in section
3 by varying the ice-particle density �i, while N0,i is fixed
in Eqs. (12) and (13). A displacement of �i modifies the
scattering efficiency of snow and graupel through a cor-
responding change in both the effective dielectric con-
stant and the slope (�i) in the particle size distribution.
A change in �i is specified by a nondimensional factor
fice, or the ratio of �i to its original value (given in
section 2c). The ice-particle model is not yet adjusted in
Fig. 7 and, therefore, fice is constant at unity. Figure 7
shows that the computed brightness temperature agrees
qualitatively with TMI measurements. A closer exami-
nation, however, reveals that the computed brightness
temperatures show an underestimation at the low-
frequency channels for moderately raining areas (e.g.,
between scan numbers 1470 and 1500), and an overes-
timation at the 85-GHz channel over heavily raining
areas (e.g., around scan number 1530). These disagree-
ments suggest that the PR-derived precipitation water
contents are not sufficiently large to account for either
liquid water emissions or ice-water scattering in TMI
brightness temperatures in this particular case. The ini-
tially assumed DSD model and ice-particle model
should be updated to achieve better physical consis-
tency between the PR and TMI. This final portion of
the algorithm that adjusts the DSD model and ice-
particle characterization is presented in the next section.

3. Adjustment of radar retrieval assumptions

The method introduced in the previous section is ex-
tended with an iterative loop to optimize the initial
assumption of the DSD model and ice-particle charac-
terization. A simple technique to adjust the initial DSD
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and ice-particle models is tested here to demonstrate if
a reasonable change in these initial assumptions has a
sufficient impact on microwave brightness tempera-
tures. Candidate DSD models are the same as those

used for the PIA adjustment (Fig. 2). Five different
values of �i are assumed for snow and graupel, where
fice (see the last paragraph of section 2g for definition)
is allowed to be 1/2, 2/3, 1, 3/2, and 2. The choice of five

FIG. 5. Near-surface rain rate for the same scene as Fig. 6: (top) the
best-fit CRM rain rate obtained in this study, and (bottom) the 2A25 rain
rate.
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discrete models of D0 (see section 2c) and fice is rather
arbitrary and can be modified in the future to produce
a more continuous solution.

The iterative loop starts with the interpolation of mi-
crowave brightness temperatures to the PR resolution.
This procedure assigns the computed and measured
brightness temperatures to every PR pixel. A next
guess is assigned to D0 ( fice) in each raining column so
that the difference is reduced in Tb,19V (Tb,85V), or the
vertically polarized brightness temperature at 19 GHz
(85 GHz). The values of D0 and fice at the ith iteration,
D(i)

0 and f (i)
ice, are determined by

D0
�i� � D0

�i�1� � 
D0, �34�

f ice
�i� � f ice

�i�1� � 
fice, �35�

where �D0 and �fice are obtained through a Newton–
Raphson technique by solving

T b,19V
obs � T b,19V

sim �
�Tb,19V

�D0

D0, �36�

T b,85V
obs � T b,85V

sim �
�Tb,85V

�fice

fice, �37�

where Tobs
b is the observed brightness temperature and

T sim
b is the computed brightness temperature under the

assumptions of D(i�1)
0 and f (i�1)

ice . While �Tb,19V/�D0 is
difficult to estimate quantitatively, its sign is always
negative because an increase of D0 results in a decrease
of the retrieved rainwater content for a given radar
reflectivity, which ends up in a smaller emission signal
at 19 GHz (and vice versa). The ith guess of D0 is,
therefore, determined by decreasing (increasing) D0 to
the adjacent value if T sim

b,19V is colder (warmer) than
Tobs

b,19V. Similarly, a stepwise decrease (increase) of fice

defines its ith guess if T sim
b,85V is colder (warmer) than

T obs
b,85V, because a lower (higher) ice-particle density

produces a weaker (stronger) scattering signal at 85
GHz. The PR matching is performed with an updated
assumptions of D(i)

0 and f (i)
ice, and then brightness tem-

peratures are computed again. This loop is iterated un-
til the brightness temperature difference is minimized
at 19 (V) and 85 (V) GHz on all of the raining PR
pixels. The minimization of Tb,19V is considered to be
achieved when the sign of (Tobs

b,19V � T sim
b,19V) is reversed

by shifting D0, due to the monotonicity of T sim
b,19V as a

function of D0. The same is true for Tb,85 in terms of fice.
Computational time for the entire process costs 10–

20 times as much as the PR-only algorithm (i.e., only
the yellow-colored part in Fig. 1). This ratio could be
higher when raining portions within an orbit are small
because the “overhead” required for brightness tem-
perature computation over nonraining areas becomes

FIG. 6. Retrieved and interpolated CWV: (a) TMI-retrieved
CWV performed over rain-free TMI footprints, (b) CRM-
provided CWV for raining PR pixels, and (c) combined and in-
terpolated CWV using (a) and (b).
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FIG. 7. The four upper panels show precipitation water and precipitation ice together
with D0 and ice-density modification factor fice, obtained from the best-fit CRM profiles
at the nadir cross section. The default values are used for D0 and fice. The horizontal axis
is labeled by PR scan numbers. The four lower panels show the computed and observed
brightness temperatures (dashed and solid lines, respectively) for the same scene, where
the vertical polarization of the (top to bottom) 10-, 19-, 37-, and 85-GHz channels are
shown.
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relatively greater in such cases. While it is computation-
ally intensive, the whole process is designed for the
purpose of database generation and, therefore, does
not affect the computational speed of the TMI rainfall
algorithm that will use the generated a priori database.

The above procedure implicitly presumes that a
brightness temperature difference at 19 (85) GHz can
be attributed primarily to the uncertainty in D0 and fice.
This simplification involves a few different problems as
follows. First, other microphysical parameters are as-
sumed to be fixed, such as 	 in Eq. (1) and N0,i in Eq.
(12). The use of an exponential form for ice-particle
size distribution has not been justified. Nonsphericity is
ignored in the dielectric modeling of hydrometeors. An
alternative approach could be to optimize all involved
parameters together, assuming that all of the associated
uncertainties are given. Such an approach might be bet-
ter in terms of generality, but would complicate the
error propagation through the algorithm, which makes
it harder to validate each assumption separately. In
practice, the alternative approach would not improve
the algorithm performance as long as we have little
knowledge to quantify the uncertainties associated with
cloud and rain microphysics.

Second, the adjusted assumptions are no longer con-
sistent with the original microphysical assumptions
made in CRM simulations. CRM is designed to predict
macrophysical variables such as liquid/ice water content
(or mixing ratio) with a reasonable accuracy by solving
hydrodynamic equations. The treatment of microphys-
ics is much more simplified and less accurate than the
macrophysical quantities. It is, therefore, not very
meaningful to strictly follow the CRM-provided micro-
physical characterization, while the macrophysical out-
puts are more reliable. This fact provides a justification
of our approach that D0 and fice are adjusted indepen-
dently of the original CRM assumptions under a pre-
cipitation water content given by CRM as it is.

Finally, uncertainties in the nonraining parameters
that are observed within the same TMI FOV as the
raining parameters can be also responsible for errors in
the computed brightness temperature. A simple diag-
nosis to justify the assumption adjustment is to see if
the brightness temperature difference is reduced also at
other frequencies, as well as those used for optimiza-
tion (i.e., 19 and 85 GHz). If the uncertainty in the DSD
is not a major source of errors in brightness tempera-
ture, adjusting the DSD would not properly resolve the
disagreement simultaneously over different frequen-
cies. Errors in brightness temperatures will be exam-
ined later in this section.

Figure 8 shows the retrieved hydrometeor profiles

and brightness temperatures for the same satellite snap-
shot as Fig. 7, but with the adjusted assumptions. The
agreement between measured and computed brightness
temperatures has improved at every frequency. The
computed brightness temperatures at the low-fre-
quency channels have increased because of an increase
in precipitation water content for moderately raining
regions. This results from the optimization of D0, as
seen in the second top panel of Fig. 8, where D0 de-
creases through the adjustment between scan numbers
1470 and 1490. The initial DSD model is not modified
by the TMI adjustment in heavily raining areas (when
PIA is reliable). Disagreements between computed
and observed brightness temperatures in areas where
PIA has been used to adjust DSD would indicate
that the discrepancy might be caused by factors unre-
lated to DSD. Ice scattering signals at the 85-GHz chan-
nel around scan number 1530 have deepened in the
computed brightness temperature because of an in-
crease in �i. Although the adjustment of the DSD and
ice-density models is performed on the pixel-by-pixel
basis, the resultant D0 and �i exhibit a reasonable spa-
tial variability.

The entire algorithm is also applied to obtain
monthly statistics using all of the TRMM orbits during
February 1998, with the exclusion of midlatitudinal
(i.e., higher than 30°S and 30°N, see section 2d) data.
Figure 9 shows the contoured probability density of the
correlation between our retrieved and the PR opera-
tional (2A25) surface rain rates. Rain rates show excel-
lent correlation when the default DSD and ice-density
models (left panel) are used. This simply indicates that
the default assumptions, originally taken from the 2A25
algorithm, reproduce the operational 2A25 retrieval. A
slight overestimation of our matched CRM solution
over the 2A25 rain rate for moderate and heavy rainfall
is due to the difference in the treatment of the PIA
adjustment between the present and 2A25 algorithms.
The contoured probability density spreads out once the
assumptions are updated to minimize the discrepancies
in brightness temperatures (right panel of Fig. 9). Not
only is this expected, it is necessary to account for the
systematic underestimation of PR (2A25) relative to
TMI in version 5 of the TRMM products.

Figure 10 depicts the computed and observed bright-
ness temperatures (vertical polarization) as a function
of the matched CRM rain rate with the updated as-
sumptions of DSD and ice-density characterization.
Brightness temperatures increase with rain rate at 10,
19, and 37 GHz until they are saturated, while 85-GHz
brightness temperatures decline as rain rate increases.
The increase in the low-frequency brightness tempera-
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tures is due to the thermal emissions from rainwater,
and the decrease at the high-frequency channel is at-
tributed to the scattering by ice particles aloft. The satu-
ration in the emission channels, which occurs at a lower

rain rate for a higher frequency, is the combined effect
of a large optical thickness of rainfall and the nonuni-
form beam-filling effect. The observed and computed
brightness temperatures show excellent agreement with

FIG. 8. Same as Fig. 7, but with the adjusted assumptions of the DSD and ice-
density models. The updated D0 and fice are indicated by red lines, while the default
values are depicted for reference by black, dashed lines.
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FIG. 10. Observed (solid) and computed (dashed) brightness temperatures as a function of the retrieved (matched CRM) surface rain
rate. Average of brightness temperatures is shown (thick line) together with the standard deviation above and below the average (thin
lines). The DSD and ice-density assumptions have been adjusted here.

FIG. 9. Contoured probability density of the correlation between the 2A25 surface rain rate and that retrieved
from best-matched CRM profiles. (left) The case with the initial DSD and ice-density assumptions, and (right) the
updated assumptions. Finger-like features seen in the right panel arise from the five discrete DSD assumptions and,
thus, would be smoothed out with a larger number of assumptions. Contour lines are labeled as 1%, 2%, 4%, 8%,
16%, 32%, and 64% (mm h�1)�2.
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each other, although the computed 37-GHz brightness
temperature has a small positive bias for light rain. This
bias arises from a slight inconsistency in the current
version of the nonraining parameter retrieval, which
results in a small excess in the computed 37-GHz
brightness temperatures as mentioned in section 2d.
Brightness temperatures with horizontal polarization
(not shown) generally exhibit a similar trend to the
vertical, except that the discrepancy is consistently
larger by a few kelvins for horizontal polarization than
for the vertical at 85 GHz. This can be attributed to
microwave scattering by nonspherical ice particles,
which is not taken into account in the present analysis.

Figure 11 shows rms errors in computed brightness
temperatures relative to the measurements. Discrepan-
cies have been reduced by adjusting the DSD and ice-
density assumptions at all the TMI channels, despite
the fact that D0 and fice were adjusted using only the
vertical polarization at 19 and 85 GHz, respectively. As
mentioned earlier in this section, the fact that the op-

timized D0 and fice result in a coherent impact over
different frequencies and polarizations is encouraging
for the legitimacy of the assumption adjustment ap-
proach. Figure 11, however, also exhibits consistent er-
rors remaining after the optimization of D0 and fice,
particularly at 85 GHz. The remaining errors are as-
cribed to other contributions, such as the nonraining
parameters and cloud/precipitation microphysical vari-
ables, which are not considered here. Refining the re-
trieval algorithm of the nonraining parameters and the
treatment of microphysical parameters is being planned
for future improvement.

4. Concluding remarks

This paper introduces a methodology to analyze pre-
cipitation profiles based on TRMM PR and TMI mea-
surements, focusing on describing the architecture of
the algorithm in detail. The raining parameters are de-
rived from PR reflectivities with assumed DSD and ice

FIG. 11. Rms errors in computed brightness temperatures relative to TMI measurements as a function of the retrieved (matched
CRM) surface rain rate. Solid and dashed lines show the results with adjusted and initial assumptions, respectively, of the DSD and
ice-density models.
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hydrometeor models, while the nonraining parameters
are retrieved from TMI brightness temperatures for
rain-free areas. The PR PIA provides a constraint on
the DSD assumption for heavy rainfall. The raining and
nonraining parameters together are then employed for
computing brightness temperatures to be compared
with TMI measurements. Differences between com-
puted and measured brightness temperatures are re-
duced by iterating the entire procedure with updated
assumptions of the DSD and ice-density models.

The current analysis provides a PR-generated data-
base without any TMI adjustments and a combined
PR–TMI database following the brightness tempera-
ture adjustment, separately from each other. A ground
validation effort may be necessary to verify that the
TMI-adjusted DSD is indeed closer to observations
than the initial guess. The adjusted database, in parallel
to the CRM-only database, can serve as the a priori
database in the GPROF algorithm (Kummerow et al.
2001). It is expected to represent a significant improve-
ment over the current CRM-only formulation and is
likely to go a long way in understanding discrepancies
between radar-only and radiometer-only solutions.
This will be investigated in a follow-up paper.
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APPENDIX

Derivation of PR Radar Equation

Radar reflectivity Z is related with radar-received
powers Pr through the radar equation for scattering
particles,

Pr �
PtGtGrh�d�c�

3

210�2r2 ln2
|K|2Z, �A1�

where Pt is the transmitted power, Gt the transmit an-
tenna gain, Gr the receive antenna gain, h the pulse
length, �d the down-track beamwidth, �c the cross-track
beamwidth, � the wavelength, r the distance, and

K �
	 � 1
	 � 2

the scattering property of particles with their dielectric
constant �.

Equation (A1) is designed so that Z is equivalent to
the sixth moment of DSD if 1) scattering particles are
so small that the Rayleigh approximation applies, 2) � is
independent of the water temperature, and 3) the at-
tenuation is negligible. Raindrops at the PR frequency,
however, satisfy none of these conditions, in general
(L’Ecuyer and Stephens 2002). Hence, a more accurate
form of the radar equation should be introduced to
describe the actual relation of DSD with the PR re-
ceived power,

Pr �
PtGtGr�

2h�d�c

210�2r2 ln2
�b exp��2 �

0

r

kext�r�� dr��, �A2�

with

�b � �
i�1

nspec �
0

�

�b,i
s �D�N�D� dD, �A3�

kext � �
i�1

nspec �
0

�

kext,i
s �D�N�D� dD, �A4�

where �s
b,i, ks

ext,i, �b, and kext are the single-particle
backscattering and extinction coefficients of the ith hy-
drometeor species and the total backscattering and ex-
tinction coefficients, respectively. The total number of
the hydrometeor species nspec is as much as 6 in the
present study, which consists of rain, snow, cloud water,
cloud ice, graupel, and the melting particles. The Mie
approximation is assumed to calculate �s

b,i and ks
ext,i for

all the species. The combination of Eqs. (A1) and (A2)
leads to

Z �
�4

�5|K|2
�b exp��2 �

0

r

kext�r�� dr��, �A5�

or, for a nadir satellite view,

Z �
�4

�5|K|2
�bfe exp��2�ext�z, ���, �A6�

where

�ext�z1, z2� � �
z1

z2

kext�z�� dz� �A7�

is the extinction optical thickness between z1 and z2,
and

fe � �
0

�z

�b�z�� exp��2�ext�0, z��� dz���
0

�z

�b�z�� dz�

�A8�

is the correction factor accounting for the self-
extinction of a scattered echo within a radar pulse with
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the length of �z. Assuming that �b and kext are con-
stants within the vertical interval of �z, one can per-
form integrals in Eq. (A8) to obtain

fe �
1 � exp��2�ext�0, �z��

2�z
. �A9�

Equations (A6)–(A9) are combined and rewritten in a
more practical form as

dBZ�z�

�mm6 m�3�
� 10�log� �b�z�

�km�1�
� � 4 log� �

�mm��
� 5 log� � 2 log|K| � logfe

� 2�ext�z, �� loge � 3�. �A10�

The wavelength � equals 21.7 mm for the PR frequency
of 13.8 GHz and |K| of 0.9255, the value for liquid water
of 0°C at 13.8 GHz, is assumed in the TRMM 1C21
dataset to evaluate the radar reflectivity. The PIA is
calculated as

PIA � 20�ext�0, �� loge. �A11�
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